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Abstract: The new ISO/WD 16355 Working Draft defines Quality Function Deployment 

(QFD) as a statistical tool for analyzing customer's voice and deploy it into technical so-

lutions. This has a huge impact on the traditional way of using QFD. Instead of symbols 

for the correlation matrix, its cells contain ratio scale numbers. Instead of working with 

relative weights, profile vectors allow combining and comparing customer’s needs and 

technical solutions. 

Transfer functions are a concept from signal theory. Transfer functions derive from some 

measured response, e.g., the voice of the customer goal profile, what solutions can control 

such a response. The technical solution usually is unknown and needs optimization. More-

over, it never meets the goal profile exactly. The difference between expected and achieved 

response is measurable as convergence gap. The crucial requirement for such derived 

measurements is to know the statistical variation that is tolerable. 

Based on the new ISO/WD 16355 working draft, goal profiles compare and combine as 

vectors. This opens the way for the vision that Prof. Akao created in the 1980ies, namely 

that comprehensive QFD transfer functions constitute a network of interrelated processes 

implementing a value chain. 
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1 Introduction 

The impact of combining QFDs in the new worlds of the Internet of things is substantial.  

Moreover, the QFD matrix becomes a measuring tool for big data. It is simple; you have to learn how 

to ask the right question. These questions constitute your experimental solution controls. Fill data into 

the cells that traditionally hold three symbols or nothing, count it and now find out whether the observed 

response matches in some way the measured response. If so, you likely have asked the right questions 

and you can rely upon the solution profile as answers. 

Prof. Akao’s vision (Akao, 1990) has become reality and accessible to all, thanks to the work of the 

technical committee that drafted the ISO/WD 16355 working draft. This paper focuses on some of the 

new ways to use QFD as a statistical tool, what the future of QFD is likely to be. QFD used as a math-

ematical discipline makes it possible to create machine-learning applications that use QFD in real time 

to adjust services, and even the product, to the rapidly changing customer’s needs, or the market. In 

addition, quality management becomes real-time, when combined with new cloud technologies.  



This paper relies on a new book to appear from the authors that explains the mysteries of Six Sigma 

Transfer Functions used in this paper (Fehlmann & Kranich, 2015 (to appear)).  

2 Modern QFD 

The main changes to traditional QFD that are apparent are the dismissal of symbols in cells and their 

replacement by numbers. Although it is still possible to use a restricted set in QFD workshops, for the 

sake of enforcing decisions, for instance the traditional 1-3-9 scale, Saaty’s postulate for a Ratio Scale 

is now compulsory. Thus, for instance 9 = 3 ∗ 3 holds; moreover, intermediate values are admissible. 

If symbols remain in use, for instance in QFD workshops, the working draft proposes standard five or 

nine levels. The roof also disappeared, and the various possible QFD matrices have become functions 

that transfer prioritization and quantification from one information set into another. 

This is a reference to transfer functions. These are probably the most powerful tools that mathematics 

developed in the 20th century. Transfer functions are used everywhere: from converting analogue to 

digital music forth and back, analyze signals, predict customer behavior, to detecting exoplanets. Out-

standing application examples of this theory are the calculation of Google’s PageRank that propelled 

ICT from a scientific niche into mainstream economy, see Gallardo (Gallardo, 2007), and Langville and 

Meyer (Langville & Meyer., 2006), and Saaty’s Analytic Hierarchy Process (AHP), see Saaty (Saaty, 

1990), (Saaty & Peniwati, 2008). 

2.1 Modern QFD as Transfer Functions 

Transfer function between the real vector spaces ℝ𝑛 and ℝ𝑚 are linear mappings between vector spaces 

of the form 𝑓: ℝ𝑛 → ℝ𝑚
 with 𝒚 = 𝑓(𝒙), 𝒙 ∈ ℝ𝑛, 𝒚 ∈ ℝ𝑚. QFD names 𝒙 the Cause, 𝒚 the Effect. Usu-

ally, the effect is observable and even measurable – by going to the Gemba (Mazur & Bylund, 2009), 

or listening to customer’s voice by the Net Promoter method (Fehlmann & Kranich, 2014) – thus meet-

ing customer’s needs, or match business drivers that make a product successful, while the cause remains 

unknown. The QFD method uncovers possible causes. The challenge is to solve the equation  

 𝒚 = 𝑓(𝒙) (1) 

for the unknown 𝒙 ∈ ℝ𝑛 and a transfer function 𝑓 that is detectable using Six Sigma measurements, 

e.g., by the Design of Experiments discipline, or based on the QFD teams’ collective expertise. 

2.2 Linear Algebra Basics 

In order to understand the impact the proposed new ISO/WD 16355 standard, it is useful to have a look 

at linear algebra; see Fehlmann (Fehlmann, 2003) and (Fehlmann, 2005). The solution vector 𝒙 is 

termed the solution profile and 𝒚 the response profile. The challenge is, to find a solution profile 𝒙 that 

produces a response profile 𝒚 = 𝑓(𝒙) that is close enough to some Target or Goal Profile 𝜏𝑦; i.e., min-

imize the distance between 𝜏𝑦 and 𝒚.  

Since all consist the real-valued column vector: 

 𝒚 = (

𝑦1
𝑦2
…
𝑦𝑚

) = 〈𝑦1, 𝑦2, … , 𝑦𝑚〉 (2) 

Conformant with the literature, and in order to avoid writing columns vectors vertically throughout this 

paper, the writing convention 𝑦 = 〈𝑦1, 𝑦2, … , 𝑦𝑚〉 applies for representing column vectors.  



In order to solve equation (1), let 𝑓: ℝ𝑛 → ℝ𝑚 be a linear functional. There exists a matrix 𝑨 ∈ ℝ𝑚×𝑛 

of dimension 𝑚 × 𝑛 with 𝑓(𝒙) = 𝑨𝒙 for all 𝒙 ∈ ℝ𝑛; see textbooks on linear algebra, e.g., Meyer 

(Meyer, 2000).  

Hence, 

 𝒚 = 𝑓(𝒙) = 𝑨𝒙 = (

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

) ⋅ (𝑥1, 𝑥2 , … , 𝑥𝑛) =

(

 
 
 
 
𝑦1 =∑𝑎1𝑗𝑥𝑗

𝑛

𝑗=1

⋮

𝑦𝑚 =∑𝑎𝑚𝑗𝑥𝑗

𝑛

𝑗=1 )

 
 
 
 

 (3) 

reveals how to calculate the 𝑖𝑡ℎ component of 𝑨𝒙. The matrix 𝑨 multiplies with the solution profile 

vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) by rows. Thus, the response profile 𝒚 = 〈𝑦1, 𝑦2, … , 𝑦𝑚〉 is exactly what QFD 

practitioners do when evaluating a QFD matrix. It tells what response 𝒚 to expect given a technical 

solution 𝒙.  

3 Solving a QFD 

In today’s QFD practice, finding the technical solution controls 𝒙 still relies on try and error. In the past, 

there were even QFD that did not check for error but simply believed that their method to evaluate a 

QFD matrix is correct. Assume some goal profile 𝝉𝒚 = 〈𝜏𝑦1 , 𝜏𝑦1 , … , 𝜏𝑦𝑚〉 is known. The challenge is, 

finding a solution for the unknown 𝒙 in the equation 𝝉𝒚 = 𝑨𝒙. 

Figure 1: Theory and Practice in Traditional QFD Evaluation 
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Calculating the achieved solution uses equation (3). The achieved solution compares with the original 

target, the goal profile. The first step is the Guess step for finding a solution profile 𝒙.  



The usual method relies on the transpose of matrix 𝑨, usually written as 𝑨 , for calculating an approxi-

mation of 𝒙: 

 𝒙 = 𝑨 𝒚 = (𝑥1, 𝑥2, … , 𝑥𝑛) , where 𝑥𝑗 =∑𝑎𝑖𝑗𝑦𝑗

𝑚

𝑖=1

 for 𝑗 = 1,2,… , 𝑛 (4) 

This is the definition of the transpose; see e.g., Meyer’s textbook on linear algebra and matrices (Meyer, 

2000). Vector multiplication is by columns, as opposed to (3). Figure 1 demonstrates how an Excel tool 

for calculating a QFD matrix unites both steps to calculate the difference between 𝒚 and 𝝉𝒚. 

3.1 The Eigenvector Solution Method 

Obviously, 𝒙 = 𝑨 𝝉𝒚 is a good solution if 𝒚 = 𝝉𝒚. However, this is normally not the case. Why 

should 𝒙 = 𝑨 𝝉𝒚 yield a solution for 𝝉𝒚 = 𝑨𝒙? In general, it does not. 

However, in many cases of interest to QFD practitioners, it does. At this point, the theory of Eigenvec-

tors and Eigenvalues comes into play; see e.g., Kressner (Kressner, 2005). In order to explain eigen-

vectors and eigenvalues, let 𝑺 ∈ ℝ𝑛×𝑛 be an arbitrary square matrix. From linear algebra it is well 

known that almost all vectors 𝒙 ∈ ℝ𝑛change their directions when the vectors are multiplied by the 

matrix 𝑺, see e.g., Lang (Lang, 1973), and Roman (Roman, 2007). A non-zero vector 𝒙 is called an 

Eigenvector of the matrix 𝑺, if 𝒙 and the vector 𝑺𝒙 are pointing in the same direction, i.e., eigenvectors 

are the directions which are invariant under the transformation 𝑺.  

The Eigenvalue λ reveals whether the vector 𝑺𝒙 remains unchanged (i.e., 𝜆 = 1), is changed in direction 

(i.e., 𝜆 < 0), is shrunk (i.e., 0 < |𝜆| < 1), or stretched (i.e., |𝜆| > 1). Thus, the fundamental equation 

to solve an eigenvector respectively eigenvalue problem is 

 𝑺𝒙 = 𝜆𝒙 (5) 

A natural question arises: How can the equation above (5) help to solve 𝒚 = 𝑨𝒙, in order to calculate a 

solution profile 𝒙 ∈ ℝ𝑛  with respect to a linear multiple response transfer function 𝑨 ∈ ℝ𝑚×𝑛  and a re-

sponse profile 𝒚 ∈ ℝ𝑚?  

Following Fehlmann and Kranich (Fehlmann & Kranich, 2015 (to appear)), (Fehlmann & Kranich, 

2011), a response profile 𝒚 can be determined by solving the following eigenvector resp. eigenvalue 

problem: 

 𝑨𝑨 𝒚 = 𝜆𝒚 (6) 

Obviously, the matrix 𝑨𝑨 ∈ ℝ𝑚×𝑚  is symmetric, i.e. 𝑨𝑨 = (𝑨𝑨 ) . It is well known from the theory 

of eigenvalues that this matrix has exactly 𝑚 (not necessarily) distinct real eigenvalues. There exists a 

set of 𝑚 real eigenvectors, one for each eigenvalue, which are mutually orthogonal and thus linear 

independent, even in the case when the eigenvalues are not distinct. In most cases, the matrix 𝑨𝑨  in (6) 

is positive definite, i.e., 𝒙 𝑨𝑨 𝒙 > 𝟎 for all 𝒙 ∈ ℝ𝑛 ∖ {𝟎}, and therefore has a Principal Eigenvector 𝒚𝑬. 

The theorem that establishes this is the Perron-Frobenius Theorem. We refer to the literature for its 

exact formulation and proof, e.g., Meyer (Meyer, 2000). 

3.2 Calculating the Eigenvector 

There are many methods available for calculating eigenvectors; the most popular and best suitable for 

our complex problem solving techniques is the Jacobi Iterative Method. Most mathematical packages 

contain eigenvector calculation methods; for Microsoft Excel, a free open source tool is available (Volpi 

& Team, 2007). Consult the book and web site of Robert de Levie (Levie, 2012). Most statistical pack-

ages contain the eigenvector methods, e.g., the R project (The R Foundation, 2015). 



The solution approach 𝒙 = 𝑨 𝝉𝒚, shown in Figure 2, is what QFD practitioners do all the time without 

knowing whether this yields any valuable result or not. Indeed, those that omit calculating the conver-

gence gap rely on guesses and belief; this is not serious QFD but rather charlatanries. However, expe-

rience shows that this approach nevertheless yields valuable solutions. The reason for this is that QFD 

matrices looking balanced most often have a principal eigenvector, and 𝒙 = 𝑨 𝝉𝒚 is just the first itera-

tion for the Jacobi Iterative Method. 

The idea is to revert cause and effect. First, transpose the matrix and calculate the combined symmetrical 

square matrix 𝑨𝑨T. According the Theorem of Perron-Frobenius, this symmetrical square matrix has a 

principal eigenvector 𝒚𝑬 with 𝒚𝑬 = 𝑨𝑨 𝒚𝑬. Using that eigenvector, the solution for 𝑨𝒙𝑬 = 𝒚𝑬 is 𝒙𝑬 =
𝑨 𝒚𝑬. ‖𝒚 − 𝒚𝑬‖ is the Convergence Gap; 𝒙𝑬 = 𝑨 𝒚𝑬 is called the Eigencontrols of 𝑨. If 𝒚 happens to 

be near an eigenvector of 𝑨, we have an approximate solution for 𝑨𝒙 = 𝝉𝒚. However, solutions do not 

exist for all transfer functions 𝑨. 

Figure 2: How the Eigenvector is calculated (Perron-Frobenius Theorem) 
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As a corollary, one notes that the constraint to positive matrices 𝑨 can be lowered. Indeed, QFD matrices 

represented by 𝑨 can contain negative cells as long as 𝑨𝑨  remains positive definite. For only a few 

negative values, this is typically the case. As examples, consult for instance the Net Promoter analysis 

method proposed by the authors in (Fehlmann & Kranich, 2014). 

3.3 A Measure for the Closeness of 𝒚 to 𝝉𝒚 

One crucial question needs clarification. How to measure the distance between the current response 

profile 𝒚 and the predefined target profile 𝝉𝒚? Since we are talking about vector spaces, the Euclidian 

norm is the metrics of choice. Thus, 

 ‖𝒚 − 𝝉𝒚‖ = √∑(𝑦𝑖 − 𝜏𝑦𝑖)
2

𝑚

𝑖=1

 (7) 

with (𝒚 − 𝝉𝒚)𝑖
= 𝑦𝑖 − 𝜏𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑚, is termed the Convergence Gap and reveals the quality of the 

approximation of 𝒚 to 𝝉𝒚. If this gap fulfills a predefined convergence criterion, then 𝒚 is (sufficiently) 

close to 𝝉𝒚. Then, 𝒙 = 𝑨  𝝉𝒚 calculates the approximate solution profile 𝒙, solving 𝒚 = 𝑨𝒙.  



3.4 Normalization of Vectors 

In general, any vector 𝒚 can be normalized using the Euclidean Norm (8) bringing them to equal length.  

 ‖𝒚‖ = √∑𝑦𝑖
2

𝑚

𝑖=1

 (8) 

When vectors differ not in length but in direction only, it is possible to add, subtract or compare two 

vectors varies with regard to their direction only. Obviously, this allows adding, subtracting or compar-

ing profiles, and this is yet another practice important for QFD practitioners. 

 

Given a vector 𝒚 = 〈𝑦1, … , 𝑦𝑚〉 of dimension 𝑚, its normalized variant is 

 𝒚′ =
𝒚

‖𝒚‖
= 〈

𝑦1
‖𝒚‖

, … ,
𝑦𝑚
‖𝒚‖

〉 (9) 

However, traditional QFD uses division by its maximum component instead, and that is yet another 

reason, why Mazur declares certain traditional practices as bad mathematics (Mazur, 2014). This needs 

some further consideration. It is worth calling Statistical Thinking. 

4 Profiles and Weights 

Statistical thinking means looking at events 

as vectors in a multidimensional vector 

space, avoiding maximizing some favored 

topic. The difference in normalization can 

become substantial.  

Modern QFD distinguishes Weights and 

Profiles.  

A Weight is a percentage of its total im-

portance, e.g., topic 1 has 5%, topic 2 

has 85%, and topic 3 has 10% relative 

weight in percentage of the total im-

portance (100%), see weight vector (10). 

A Profile in contrary is a vector of length 

1. Their vector components are not relative 

weights; however, its length always are 

fixed and thus comparable.  

Figure 3 demonstrates how two priority 

profiles corresponding to the weight vec-

tors (10) and (11) sum up into a combined 

priority profile, respective weight vector 

(12). This happens in the three column. In 

the rows, weight vectors transform into profile vectors and back again.  

Summing up the corresponding weight vectors is bad mathematics; the results are not the same as when 

summing up the priority profiles and converting them back to weight vectors. In detail, when repre-

sented as a vector, the weights looks as follows: 

 〈5%, 85%, 10%〉 (10) 

Figure 3: Adding Weights versus Adding Profiles 

 



The Euclidian length of vector (10) is √0.12 + 0.72 + 0.22 = 0.86. Since importance might correlate 

to the budgeted amount that is being spend for these topics, weight percentage matters. 

Take as an example another weight vector, say the second part in Figure 3: 

 〈33%, 34%, 33%〉 (11) 

Clearly, its Euclidian length is 0.58. Thus, the two weight vectors (10) and (11) have unequal length. 

Adding them by components – percent becomes decimal fraction – yields 〈0.38,1.19,0.43〉.  

This corresponds to the weight vector  

 〈19.0%, 59.5%, 21.5%〉 (12) 

However, since the first weight vector was longer, it contributes more to the sum vector (12) than the 

second does. Unless there is some special business reason for it, such an unequal treatment can have 

disastrous results, for instance spending investment money in the wrong places. 

Converting both vectors to priority profiles, i.e., by dividing their components through its length, yields 

two priority vectors of equal length but pointing into two different directions in the vector space. Com-

bining them by adding the three components yields the profile 〈0.34, 0.86, 0.37〉 with Euclidian unit 

length ‖〈0.34, 0.86, 0.37〉‖ = 1. This profile again converts into weights by normalizing the sum of 

components to 100%.  

The result is the weight vector: 

 〈21.7%, 54.5%, 23.7%〉 (13) 

This obviously is not the same weight vector as (12). The convergence gap is 0.24. For a vector of unit 

length, this is one quarter of its length, a substantial difference, pointing into another direction. The 

reason for the difference is the length inequality. In practice, this difference is difficult to detect and 

might escape the attention of QFD practitioners. The selected example uses extremely different weight 

vectors to demonstrate the case. 

As a conclusion, while it is safe to compare vector profiles, adding, subtracting, or multiplying them as 

needed in a QFD, it is bad mathematics if you compare, add or subtract weight vectors. 

5 Summary 

Quality Function Deployment is changing from a workshop practice based on empirical experience to 

become a mainstream practice based on sound mathematical foundations. Together with other outstand-

ing applications of transfer functions, it marks the fundamental change occurring in economy and qual-

ity management of the 21st century. The upcoming ISO/WD 16355 Standard is paving the way for it, 

even if the exact content is not yet fully fixed and available.  

However, despite sound mathematics, the key elements of QFD will remain the collections of cus-

tomer’s needs and business drivers in the market, and the collaboration of expert teams, even if part of 

it can be automated and might become available in real time. The number and the quality of tools offered 

to these expert teams is what makes the difference, and this entails cutting away some of the old hats 

today still in use, and embrace modern mathematics with modern QFD. 
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