Using AHP in QFD – The Impact of the ISO 16355 Standard

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

FD Institute

he official source for QFD

Thomas M. Fehlmann, QFD Architekt, Euro Project Office AG, Zürich E: info@e-p-o.com H: www.e-p-o.com

Glenn H. Mazur, QFD Red Belt[®] and QFD Architekt, QFD Institute

E: glenn@mazur.net H: www.qfdi.org

Dr. Thomas Fehlmann

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

Dr. Math. ETHZ 1981: Six Sigma for Software Black Belt 1991: Euro Project Office AG, Zurich 1999: Akao Price 2001 for original contributions to QFD 2001: SwissICT Expert for Software Metrics 2003: Member of the Board QFD Institute Deutschland - QFD Architect 2004: 2007: CMMI for Software – Level 4 & 5 Net Promoter[®] Certified Associate 2011: 2012: Member of the DASMA Board 2013: Vice-President ISBSG

Cause-Effect Diagram for Tire Design (Mizuno & Akao, 1994)

Queterrer	Process assurance items									Product assurance		Assurance items for market							
Drientation	Tread extrusion	Cutting	Band	Bead	Fabrication	Molding	\langle	\langle	Inspection	items (general specifications: items to be assured by plant)	Product assurance items (product specifications)	i of vibrations driving	n & braking lities	verability	resistance	al cations	A	в	
Lean Six Sigma	d weight		d weight	d weight	it weight	earance)				Feeling when o	Tractio	Maneu	Rolling	Extern identif			
Agile Processes	Irea			Insulation bea	Squeeze cord un	Mold app				Fabrication	Product			6	,				
Project stimations		ze cord unit weight		Flip bead weight	Chafer weight	folding dimensions				weight	weight								
Transfer Functions		Squee				2													

First Example of QFD matrix (Suzuki, 1972)

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

How Cause-Effect Diagrams become QFD Matrices

Comprehensive QFD (Akao, 1990)

Profiles for Ratio Scales according ISO 16355

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions • Let $y = \langle y_1, ..., y_m \rangle$ be a vector of dimension m. The Euclidian norm for vectors is:

$$\|\boldsymbol{y}\| = \sqrt{\sum_{j=1}^m y_j^2}$$

• A vector becomes a **Profile** by dividing components through its length (normalization):

$$\mathbf{y}' = \frac{\mathbf{y}}{\|\mathbf{y}\|} = \langle \frac{y_1}{\|\mathbf{y}\|}, \dots, \frac{y_m}{\|\mathbf{y}\|} \rangle$$

- Profiles are vectors of length = 1
- Profiles can be added, subtracted and compared as any other vector
 - > Sum of vectors become profiles again be normalization
 - > Profiles allow for statistical methods they show **Directions** in some event space

Analytic Hierarchy Process (AHP)

AHP Priorities	Target 1	Target 2	Target 3		ofile	nking	
Customer's Needs	y1	y2 .	y3 .	Weight	Pre	Ra	
y1 Target 1	1	2	1	41%	0.69	1	
y2 Target 2	1/2	1	2	33%	0.56	2	
y3 Target 3	1	1/2	1	26%	0.45	3	

- Calculates weights (sum = 100%)
- Calculates profile (sum of squares = 1)
- Calculates ranking (for both the same)
 - The profile is used for the hierarchy because you can compare, add and linearly combine vectors

Customer

Orientation

Lean Six Sigma

Agile

Processes

Project

Estimations

Transfer

Functions

For weights, this remains forbidden!

- τ_v Ranking Profile **AHP** Priorities **Customer's Needs** 22 3 y1 Target 1 2 41% 0.69 1 1/2 1 2 0.56 y2 Target 2 33% 2 3.78 0.84 **26%** 0.45 3 y3 Target 3 1/2 26%
 - The profile is calculated as an Eigenvector, similar to Google Search
 - The method is shown above
 - The Annihilator method
 - Annihilates the matrix A by its transform A^T
 - \rightarrow Result is au_y

```
\rightarrow AA^{\mathsf{T}}\tau_y = \tau_y
```


A Sample AHP – Which School to Select?

Solving a QFD Matrix y = Ax

Customer

Orientation

Agile Processes

Project Estimations

Transfer Functions

Practice

The Trick how to Use AHP Calculation in QFD y = Ax

Advantages of Eigensolution Method

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

- Eigensolutions are stable
 - \rightarrow When repeatedly applying the process represented by the transfer function A, the response y remains always the same
 - $\Rightarrow y = AA^{\mathsf{T}}y = AA^{\mathsf{T}}(AA^{\mathsf{T}}y) = AA^{\mathsf{T}}(AA^{\mathsf{T}}(AA^{\mathsf{T}}y)) = \cdots$
- Other solutions might also yield good even better convergence gaps but when repeated the process diverges

Eigensolutions level out inconsistencies

A Measure for Quality – the Convergence Gap

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions The Convergence Gap

$$\|\boldsymbol{y}-\boldsymbol{\tau}_{\boldsymbol{y}}\| = \sqrt{\sum_{i=1}^{m} (\boldsymbol{y}-\boldsymbol{\tau}_{\boldsymbol{y}})_{i}^{2}}$$

reveals the quality of the goal profile's approximation by the achieved solution profile

- This is the Euclidean Norm
 - \rightarrow Distance between vectors y and τ_y

Goal Profile	Achieved Profile	
0.46	0.46	
0.35	0.41	
0.38	0.40	
0.36	0.34	
0.34	0.32	
0.35	0.35	
0.39	0.35	
	Conve	ergence Gap 0.08

Displaying QFD Relationship Weights with AHP Judgments

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

8	
7 1	Nuch higher importance
6	
5 (Clearly higher importance
4	
3 5	Somewhat higher importance
2	
1 E	Equal importance
1/2	
1/3	Somewhat smaller importance
1/4	
1/5	Clearly smaller importance
1/6	
1/7	Much smaller importance
1/8	
1/9	No importance at all

9 Overruling importance

Comprehensive QFD with AHP

- Customer Orientation
- Lean Six Sigma
- Agile Processes
- Project Estimations
- Transfer Functions

- The ISO 16355 standard projects QFD into the 21st century
- QFD is thanks to good mathematics implementable in quality processes
 - > Implement New Lanchester Theory into the New Feature Prioritization concept
 - → Use QFD in agile software development for testing and safety deployment
- QFD will always depend on the teams using it
 - → Because it record and documents the reasons for taking decisions
- QFD will go mainstream

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

Traditional Solution Profile and Modern Solution Profile

- **Eigensolution level** Inconsistencies out
 - Similar to Saaty's \rightarrow AHP Calculation

Critical To Quality		Critical To Quality											
Dep	loyment Combinator	Goal Profile	Browser Style GUI	: Keep to XSQL Standard	Open Interfaces	· Agile Programming	Reusable classes	Custom Extensions	Portfolio Management	Reliable Functionality	Moderated Forum	Achieved Profile	
Cus	tomer's Needs		×	Ž	×3	×4	х5 Х	Š	×7	8X 8X	6X		
y1	Competency to answer inquiries	0.46	9	9	9	3		3	3	9	3	0.46	
y2	Confidentiality	0.35		9	3		9	9	3		9	0.41	
y3	Suitability for business needs	0.38	3		3	9	3	3	9	9	1	0.40	
y4	Short Development Cycles	0.36		3	3	3	3	3	9		9	0.34	
y5	Functionality where you need it	0.34	9			9	1	3		9		0.32	
y6	Social competency	0.35				9	3	9	1		9	0.35	
y7	Communication	0.39	9	3	3	3	3		3		9	<mark>0.35</mark>	
	Solution Profile for Critical To	Quality	0.34	0.30	0.26	0.39	0 25	0.34	0.32	0.32	0 44	Convergence Gap	

0.10 Convergence Range 0.20 Convergence Limit

Customer Orientation

Lean Six Sigma

Agile Processes

Project **Estimations**

Transfer Functions

0.08 🔵

Profiles and Weights

Customer Orientation

Lean Six Sigma

Agile Processes

Project Estimations

Transfer Functions

- In the columns, two priority profiles are summed up yielding the sum of profiles in the third row, and normalized again in the fourth row
- Left are the corresponding weight vectors
- Summing up the weight vectors and transform them back to profiles yields different results than the sum of profiles
- Summing up the corresponding weight vectors is bad mathematics
 - Good mathematics is with profiles only
 - When calculating with weights, large vector components leave a bias

	Weights	\rightarrow	Profiles	\rightarrow	Weights
Topic 1	5%	0.00	0.06	0.06	5%
Topic 2	85%	0.72	0.99	0.99	85%
Topic 3	10%	0.01	0.12	0.12	10%
	100%	0.86	1.00	1.17	100%
	plus↓	\rightarrow	plus↓	\rightarrow	Weights
Topic 1	33%	0.11	0.57	0.57	33%
Topic 2	34%	0.12	0.59	0.59	34%
Topic 3	33%	0.11	0.57	0.57	33%
	100%	0.58	1.00	1.73	100%
	sum \downarrow		sum \downarrow	\rightarrow	Weights
Topic 1	0.38		0.63	0.34	21.7%
Topic 2	1.19		1.58	0.86	54.5%
Topic 3	0.43		0.69	0.37	23.7%
	2.00		1.84	1.58	100%
	norm↓	\rightarrow	Profiles	\rightarrow	Weights
Topic 1	19%	0.04	0.22	0.22	19.0%
Topic 2	60%	0.35	0.69	0.69	59.5%
Topic 3	22%	0.05	0.25	0.25	21.5%
	100%	0.66	0.77	1.17	100%
				0.24	

Weight & Profile 1

Weight & Profile 2

Sum of Profiles 1+2

¥

Sum of Weights 1+2

Convergence Gap